Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli.
نویسندگان
چکیده
It has been proposed that capillaries can detect changes in tissue metabolites and generate signals that are communicated upstream to resistance vessels. The mechanism for this communication may involve changes in capillary endothelial cell membrane potentials which are then conducted to upstream arterioles. We have tested the capacity of capillary endothelial cells in vivo to respond to pharmacological stimuli. In a hamster cheek pouch preparation, capillary endothelial cells were labeled with the voltage-sensitive dye di-8-ANEPPS. Fluorescence from capillary segments (75-150 μm long) was excited at 475 nm and recorded at 560 and 620 nm with a dual-wavelength photomultiplier system. KCl was applied using pressure injection, and acetylcholine (ACh) and phenylephrine (PE) were applied iontophoretically to these capillaries. Changes in the ratio of the fluorescence emission at two emission wavelengths were used to estimate changes in the capillary endothelial membrane potential. Application of KCl resulted in depolarization, whereas application of the vehicle did not. Application of ACh and PE resulted in hyperpolarization and depolarization, respectively. The capillary responses could be blocked by including a receptor antagonist (atropine or prazosin, respectively) in the superfusate. We conclude that the capillary membrane potential is capable of responding to pharmacological stimuli. We hypothesize that capillaries can respond to changes in the milieu of surrounding tissue via changes in endothelial membrane potential.
منابع مشابه
Capillaries and arterioles are electrically coupled in hamster cheek pouch.
In this report we demonstrate electrical communication in the microcirculation between arterioles and capillary networks in situ. Microvessel networks in the hamster cheek pouch, which included capillaries and their feeding arterioles, were labeled with the voltage-sensitive dye di-8-ANEPPS by intraluminal perfusion through a micropipette. Pulses of 140 mM potassium solution were applied by pre...
متن کاملModeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane
In this study the catalytic dehydrogenation of ethylbenzene to styrene was investigated in a simulated tubular sodalite membrane reactor. The high quality microporous sodalite membrane was synthesized by direct hydrothermal method and characterized by single gas permeation measurements. The performance of the prepared membrane showed high potential for application in a dehydrogenation membrane ...
متن کاملمطالعه تاثیر باکتریهای محرک رشد تولید متابولیتهای سازگاری و برخی خصوصیات یونجه همدانی در طی تنش خشکی
Drought is one of the most important environmental stresses that adversely affect plant growth and crop production will In order to study a factorial randomized complete block design with three replications in greenhouse Ardabil University mohaghegh was conducted in 2013. Treatments were water stress at three levels: 35%, 55% and 75% field capacity and seed inoculated with mycorrhiza growth pro...
متن کاملO3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice
The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....
متن کاملEffects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices
Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 274 1 Pt 2 شماره
صفحات -
تاریخ انتشار 1998